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Normal propagation of continuous and pulse longitudinal acoustic waves through the gap between two solid
half-spaces, which is filled with a dissipative medium, has been considered theoretically. A strong dependence
of the transmission and reflection coefficients and of their phases on the coefficient of damping of longitudinal
sound in the medium of the gap and on its dimensionless phase thickness has been shown. The shapes of the
reflected acoustic pulsed signal and of the signal transmitted by the gap have been calculated using software.
The results obtained are used in investigation of the acoustic properties of viscous fluids. Application of the
transformed spectrum of the signals to development of radiation devices and processing of information is dis-
cussed.

Introduction. The propagation of bulk acoustic waves without absorption in stratified media has been consid-
ered rather thoroughly [1], although analytical solutions have been found for a three-layered medium only in the case
where the incidence of the wave is normal to the interfaces. If it is required by practical applications, oblique inci-
dence of the wave on the boundaries of a stratified structure must be calculated on a computer. In actual experiments
and engineering applications, one often deals with frequency-broadband signals of finite, very short, length rather than
with continuous acoustic vibrations. In solids and most liquids, except for the resonances of interaction between the
acoustic waves and other elementary excitations of a substance (e.g., spin waves [2]), dispersion of the velocity of
sound is absent up to high frequencies at which its excitation in the form of directional radiation has not been realized
until the present time. Nonetheless, there exist fluids with considerable viscosity or mixtures of substances in chemical
reaction between them in which dispersion of sound occurs.

If the dispersion of sound is absent in the materials composing the stratified structure, all the frequency com-
ponents of the pulsed signal are reflected from the interface according to classical Fresnel formulas, which are fre-
quency-independent and, consequently, the spectrum of transformed signals does not change. In the case under
consideration (Fig. 1), by virtue of the existence of sound dispersion in a strongly dissipative medium (SDM), the fre-
quency components of the pulsed signal in its incidence I on the interface are transformed differently and, accordingly,
the spectrum of the signal reflected from the interface II and transmitted by it III changes [3]. In this case, depending
on the number of wavelength quarters present on the layer thickness, the frequency dependence of the coefficients of
reflection and transmission arises due to the interference of the incident, reflected, and transmitted waves.

Theory. Let a continuous harmonic longitudinal wave, which is partially reflected and finds its way to a layer
of a strongly dissipative medium and then to solid half-space 2, be incident from solid half-space 1 to the layer of a
strongly dissipative medium (Fig. 1). The wave equations for the longitudinal wave in each material of the stratified
structure are written as follows [1, 4]:

ρ1u
..

x = c1ux,xx ,   ρu
..

x = cux,xx + bux,xxt ,   ρ2u
..

x = c2ux,xx , (1)

where ux,xx = ∂2ux
 ⁄ ∂x2, ux,xxt = ∂3ux

 ⁄ ∂2x∂t, and b is the parameter of dissipative loss determined according to the re-
lation [1]

b = 
4
3

 η + ξ + χ (cv
−1

 + cp
−1) . (2)
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We find solutions for the longitudinal wave in the half-spaces (x < 0, x > d) and the layer (0 < x < d) in the
form [4]

u1x = A1 exp [i (k1x − ωt)] + B1 exp [i (− k1x − ωt)] ,   ux = A exp [i (kx − ωt)] + B exp [i (− kx − ωt)] ,

u2x = A2 exp [i (k2x − ωt)] , (3)

where k1 = ω ⁄ s1 and k2 = ω ⁄ s2 are the wave numbers. The law of sound dispersion in the strongly dissipative me-
dium is written as follows [1]:

k
2
 = (1 − iωb ⁄ c)

−1
 ω2 ⁄ s0

2
 , (4)

where k = k′ + ik′′  (k′ and k′′  are its real and imaginary parts) and s0 = (c ⁄ ρ)1
 ⁄ 2.

Relations for the phase and group velocities follow from (4):

vph = s0 [2 (1 + x
2)]1 ⁄ 2 ⁄ [2 (1 + x

2)]1 ⁄ 2 + 1]
1 ⁄ 2 , (5)

vgr = 
2ks0

2
 (1 + x

2) [(1 + x
2)1

 ⁄ 2 + 1]

(1 + x
2)2 




xωc + 2s0k

2
 [(1 + x

2)1
 ⁄ 2 + 1] ⁄ ωc




 − (1 + x

2)1
 ⁄ 2 (2xωc + 1 ⁄ 2) + xωc

 , (6)

where x = ω ⁄ ωc and ωc = c/b = ρs0
2 ⁄ b. Analysis of (5) and (6) shows that with increase in the frequency we have

(ω → ∞) vph → ∞  and vgr → 0.
For k′ and k′′  parts of the wave number we find the following expressions:

k′
2

 = k0
2
 
(1 + x

2)1
 ⁄ 2 + 1

2 (1 + x
2)

 ,   k′′
2

 = k0
2
 

x
2

2 (1 + x
2) [(1 + x

2)1
 ⁄ 2 + 1]

 ,   k0 = ω ⁄ s0 . (7)

If the real part of the wave number decreases from k0 = ω ⁄ s0 to zero, the imaginary part has a maximum at the fre-
quency ω C ωc, and when x → 0 and x → ∞, k′′  → 0. Their ratio is always k′′  ⁄ k′ < 1 and is a slowly increasing func-
tion of the argument x. Since we consider sound of weak intensity, first, it will damp exponentially in the absorbing
layer and the thus-caused slight heating of the medium will not lead to the distortion of the wave characteristics; sec-
ond, in Eqs. (1), it suffices to restrict ourselves to the linear terms only, since the contribution of the square terms and
of the terms of higher order will be negligibly small compared to the first ones. If as the layer of a strongly dissipa-
tive medium we use a rheological fluid whose viscosity changes by a factor 106 or more under the effect of the elec-
tric or magnetic field [5], or a magnetoacoustic material where the absorption of ultrasound greatly increases with
distance to the point of orientation phase transition along the outer magnetic field [2], then, for such materials, there
is a unique possibility of electronic control over the spectral characteristics of the signal (amplitude, phase, duration,
frequency band); this can be employed in developing devices of signal transformation in processing of information.
Another important application of the considered effect can be study of the characteristics of friction pairs (coefficient
of friction, friction force and its momentum, wear) [6] which are usually present in one form or another in different
mechanisms, and knowledge of tribological characteristics determines the operating characteristics, reliability, and lon-
gevity of machines.

Fig. 1. Propagation of the longitudinal wave in the stratified structure.
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At present, there are rather numerous methods for measuring the viscosity of liquid media [7], but all these
methods require direct mechanical contact between the measuring device and the fluid; they are long-lasting, restore
the true value of viscosity from the nonlinear calibration curve of an indirectly measured parameter, and are suitable
for a narrow range of substances. The technique suggested is instantaneous and is suitable not only for measuring the
viscosity of a wide class of liquid media but also for recording the internal friction in solids.

The boundary conditions represent the continuity of elastic displacements and stresses on the interface and
have the form

u1x = ux ,   c1u1x,x = cux,x + bux,xt   at   x = 0 ;   ux = u2x ,   cux,x + bux,xt = c2u2x,x   at   x = d . (8)

The solutions (3) satisfy the corresponding wave equations and, being substituted into (8), give the system of
linear equations for determination of the coefficients of reflection Rω = B1

 ⁄ A1 and transmission Tω = A2
 ⁄ A1. The re-

flection coefficient is determined from the relation

Rω = 
A − B

A + B
 , (9)

Fig. 2. Phase and modulus of the reflection coefficient for the stratified struc-
ture: a) plastic–ER–plastic; b) aluminum–ER–aluminum; c) aluminum–ER–plas-
tic; d) plastic–ER–aluminum; for aluminum: Z = 17.33⋅106 kg/(m2⋅sec) and s =
6.42 km/sec; for ER — 3.25⋅106 and 2.68; for plastic — 3.1⋅106 and 2.7. ωc
= 2π⋅107 Hz; Ψ = k′d.
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where

A = Z1Z2X− + iZ (Z1 − Z2)(1 − ix)(iγ − β)X+; B = Z
2
 (1 − ix)2(iγ − β)X−; 

X+ = 2 cos (α) cosh (β) − 2i sin (α) sinh (β); X− = 2 cos (α) sinh (β) − 2i sin (α) cosh (β);

Z = ρs0; α = ω ⁄ (√2s0); β = k′′d;  γ = k′d.

It is seen from Eq. (9) that the expression for the coefficient of reflection of a continuous longitudinal wave
from the dissipative layer is rather cumbersome. Because of this, the frequency dependence of the phase and the
modulus of the reflection coefficient (Fig. 2) for the stratified structure having a layer of epoxy resin (ER) was calcu-
lated on a computer by numerical methods. The reflection coefficient is Rω = (Z1 − Z2)/(Z1 + Z2) when ω → 0 and
Rω → 1 when ω → ∞. With change in the frequency, when the length nλ ⁄ 4 (n is an integer) is present on the layer
thickness, we have the extrema of Rω, i.e., oscillations of the coefficient of reflection of the longitudinal wave arise.

We obtain the following relation for the coefficient of transmission Tω of the longitudinal wave:

Tω = 
− 4iZ1Z (1 − ix) (iγ − β)

A + B
 exp (− ik2d) . (10)

Fig. 3. Phase and modulus of the transmission coefficient for the considered
stratified structures. For the notation see Fig. 2.
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Figure 3 gives the frequency dependences of the phase and the modulus of the transmission coefficient. With change
in the frequency, when the length nλ ⁄ 4 is present on the layer thickness, the arising minima (maxima) of Tω corre-
spond to the maxima (minima) of Rω.

An actual pulsed acoustic signal can be represented by the expression

u1
inc

 (x = 0, t) = u10
inc

 exp 



− Γ 

 t
T




 exp 




i2π 

t

T



 



θ 



t − 

τ
2




 − θ 




t + 

τ
2








 , (11)

where the envelope of the pulsed signal is related to the quality Q by the expression Γ = π ⁄ Q; T = 2π ⁄ ω0; τ = nT,
n is equal to the number of periods of the radiated pulse.

Proceeding from the presented relations for Rω (9) and Tω (10) and using direct and inverse Fourier trans-
forms

F (ω) = 
1

2π
  ∫ 
−∞

+∞

 u1
inc

 (x = 0, t) exp (iωt) dt , (12)

u1
ref

 (x = 0, t) =  ∫ 
−∞

+∞

 F (ω) Rω exp (− iωt) dω , (13)

u2
tran

 (x = d, t) =  ∫ 
−∞

+∞

 F (ω) Tω exp (− iωt) dω , (14)

we calculated the shape of the reflected and transmitted signals in the above-mentioned stratified structures at n = 6
and Γ = 1 with the aid of the computer.

From the results of the calculations shown in Fig. 4, we see a strong dependence of the amplitude and the
phase of the reflected and transmitted signals on the frequency ω0 of the fundamental harmonic of the pulsed signal.

Fig. 4. Reflected and transmitted signals for the plastic–ER–aluminum structure
[a) ω ⁄ ωc = 0.1; b) 1; the thickness of the ER layer is 2 mm]: 1) u1

inc ⁄ u10
inc; 2)

uref ⁄ u10
inc; 3) utran ⁄ u10

inc.
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The phase of the reflected pulse is understood in a more general way than in the case of continuous vibrations, namely:
as the value of the displacement of the intersection of the transmitted pulse and the time axis relative to the intersection
of the radiated pulse and this axis. The transformation (12) applied to the radiated pulse u1

inc(x, t), the reflected pulse
u1

ref(x, t), and that transmitted by the layer u1
tran(x, t) gives their spectra which differ from each other [8, 9].

CONCLUSIONS

The developed software allows one to elucidate the distinctive features of the reflection and transmission of
radiated signals of any shape. Analytical calculations are partially possible for the simplest shapes of them (e.g., for a
rectangular signal or for several periods of a sinusoidal signal, which are impracticable), but the nontrivial frequency-
dependent form of Rω and Tω makes determination of the spectrum and shape of the reflected or transmitted signals
difficult or even impossible.

The state of a strongly dissipative medium qualitatively affects the reflection and transmission coefficients and
the phase of both continuous and pulsed acoustic signals. Allowing for the fact that phase measurements are much
more accurate than amplitude ones [10], from them one can judge the absorption of sound in the strongly dissipative
medium and, making use of the method of inverse problems, restore the time dependence of the viscosity of the pre-
pared substance, which changes due to its restructurization or temperature variations. From the dependences obtained
one can judge the readiness of one technological product or another for use [11].

Continuous monitoring of the quality and structure of coatings in deposition of them on substrates of materials
is of importance in modern electronic and engineering production. The suggested technique of ultrasonic phase-time
measurements allows diagnostics of the fine structure of substances experiencing physicochemical transformations due
to the technological processes of molecular and laser epitaxy, electro- and photolithography, electrochemistry, plasma-
and vacuum deposition, and brazing. Here, in most of the enumerated cases one observes strong local heating and
phase, aggregate, and chemical transformations in some regions of the product which, under these conditions, are
strongly dissipative media in their properties, since changes in the density and the elastic moduli and an increase in
the absorption of ultrasonic vibrations arise in them. As a result, subsequently one will manage to relate the coefficient
of reflection of the longitudinal wave and its phase and spectrum to the characteristics of the state of the coating and
its adhesion resistance and, owing to this, it will become possible to flexibly control the synthesis of coating materials
with specified optimum properties with reduction of energy consumption during the technological process and increase
in their service life.

NOTATION

ρ1 and ρ2, densities of the materials of solid half-spaces 1 and 2, kg/m3; ρ, density of the layer of a strongly
dissipative medium, kg/m3; ux, component of the elastic displacement in the longitudinal wave (i.e., acoustic signal
propagating in the layer of a strongly dissipative medium), m; c1 and c2, elastic moduli for solid half-spaces 1 and 2,
J/m3; c, elastic modulus for the layer of a strongly dissipative medium, J/m3; η, shear viscosity, Pa⋅sec; ξ, bulk vis-
cosity, Pa⋅sec; χ, thermal conductivity, W⋅m⋅sec/K; cp and cv, heat capacities of the medium at constant pressure and
volume, J/(kg⋅K); x, coordinate along the abscissa axis, m; λ, wavelength, m; d, thickness of the layer of an strongly
dissipative medium, m; u1x and u2x, acoustic signals propagating in media 1 and 2, m; A1 and A2, amplitudes of the
acoustic signal propagating in media 1 and 2 in the forward direction, m; B1, amplitude of the acoustic signal propa-
gating in medium 1 in the backward direction, m; A and B, amplitudes of the acoustic signal propagating in the layer
of a strongly dissipative medium in the forward and backward directions, m; ω, cyclic frequency, Hz; k1 and k2, wave
numbers for media 1 and 2, m−1; s1 and s2, velocities of longitudinal sound in media 1 and 2, m/sec; k, complex
wave number for the layer of a strongly dissipative medium, m−1; s0, velocity of longitudinal sound in the layer of a
strongly dissipative medium in the absence of dissipation (at ω = 0), m/sec; vph, phase velocity, m/sec; vgr, group ve-
locity, m/sec; ωc, characteristic frequency of the strongly dissipative medium, Hz; Z1 and Z2, acoustic impedances of
media 1 and 2 for longitudinal sound, kg/(m2⋅sec); Z, acoustic impedance for the layer of a strongly dissipative me-
dium for longitudinal sound, kg/(m2⋅sec); u1

inc, radiated longitudinal acoustic signal, m; u10
inc, amplitude of the radiated

acoustic signal, m; Γ, dimensionless parameter determining the envelope of the incident acoustic pulsed signal; T, pulse
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period, sec; ω0, frequency of the fundamental harmonic of the signal, Hz; θ, Heaviside function; Q, acoustic-pulse
quality; τ, acoustic-pulse duration, sec; t, time, sec; u1

ref, acoustic signal reflected from the layer of a strongly dissipa-
tive medium to medium 1, m; u2

tran, acoustic signal transmitted by the layer of a strongly dissipative medium to me-
dium 2, m. Sub- and superscripts: 1 and 2, refer to media 1 and 2, respectively; x, longitudinal displacement
(coordinate, denotes the abscissa axis); inc, incident; ref, reflected; tran, transmitted; +, positive direction; –, negative
direction; ω, refers to frequency, frequency-dependent; gr, group; ph, phase; c, characteristic (as applied to the charac-
teristic frequency of the interface).
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